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A class of quasiperiodic tilings of the complex plane is discussed. These tilings

are based on �-expansions corresponding to cubic irrationalities. There are

three classes of tilings: Q3, Q4 and Q5. These classes consist of three, four and

five pairwise similar prototiles, respectively. A simple algorithm for construction

of these tilings is considered. This algorithm uses greedy expansions of natural

numbers on some sequence. Weak and strong parameterizations for tilings are

obtained. Layerwise growth, the complexity function and the structure of fractal

boundaries of tilings are studied. The parameterization of vertices and

boundaries of tilings, and also similarity transformations of tilings, are

considered.

1. Introduction

Using substitution dynamic systems, Rauzy (1982) constructed

a complex quasiperiodic plane tiling consisting of three types

of tiles with fractal boundaries. These tiles are pairwise similar.

Moreover, they are self-similar. Recall that a self-similar tile is

a compact set with non-empty interior that consists of a finite

number of similar tiles. Thurston (1990) and Kenyon (1996)

discovered self-similar quasiperiodic tilings invariant under a

scaling symmetry with respect to expansion �. Another

approach to the construction of self-similar tilings was

suggested by Akiyama (1999), who used a �-expansion to

construct tiles, where � is a Pisot number. Now the following

methods of construction of self-similar tilings are known:

substitution dynamic systems (Rauzy, 1982; Ito & Ohtsuki,

1993; Arnoux & Ito, 2001; Sirvent & Wang, 2002); numeration

systems for natural numbers (Rauzy, 1982; Zhuravlev, 2006);

�-expansions (Akiyama, 1999); digit tilings (Lagarias & Wang,

1996); radix representations (Akiyama et al., 2005); and iter-

ated function systems (Hutchinson, 1981).

In this paper we use the method of �-expansions corre-

sponding to cubic irrationalities. There are three classes of

tilings: Q3, Q4 and Q5, which consist of three, four and five tile

types, respectively. Tiles of these types are pairwise similar. We

discuss a new approach to these tilings based on weak and

strong parameterizations for tilings.

The given approach goes back to an old idea of de Wolff

(1974) of using higher-dimensional spaces for the description

of incommensurately modulated structures. This idea was

extended to quasiperiodic tilings by de Bruijn (1981) and

Janssen (1986). With such an approach we naturally have a

physical space with the tiling and an internal space with

parameters of tiles. There is symmetry between these spaces.

Thus we can swap physical and internal spaces.

In our case we can consider the complex plane as the

physical space and the real line as the internal space. It turns

out that the language of parameters is very convenient for

describing geometric properties of self-similar tilings: types of

local encirclements, structure of boundaries, similarity trans-

formations of the tilings and so on. This approach is a gener-

alization of the well known concept of model sets [see, for

example, Moody (2000)]. Rauzy points of the tiles (special

points from tiles) and vertices of tilings are model sets.

Earlier this approach was used to study one special quasi-

periodic tiling (Rauzy tiling). In particular, its layerwise

growth (Zhuravlev & Maleev, 2007a, 2008a), complexity

function and forcing (Zhuravlev & Maleev, 2007b), pure point

diffraction (Zhuravlev & Maleev, 2008b), and structure and

similarities of its fractal boundaries (Zhuravlev & Maleev,

2009a,b) were studied.

2. Construction of the quasiperiodic tiling

Consider the cubic equation

x3 þ px2 þ qx ¼ 1 ð1Þ

with integer coefficients. Assume the following conditions on

the coefficients,

pþ q � 1;

�ð p; qÞ ¼ 4p3 þ p2q2 � 4q3 � 18pq� 27 < 0;
ð2Þ

�1 � p � qþ 1: ð3Þ

The condition (2) is equivalent to the following property:



(1) Equation (1) has a unique real root � from the segment

½0; 1� and two complex roots � and ~�� with �
�� �� = j ~��j > 1.

Akiyama (2000) proved that the condition (3) is equivalent

to the following property:

(2) Consider an arbitrary r 2 ½0; 1� such that r 2 Z½��. Then

the expansion x =
P1

i¼1 "i�
i, obtained by a greedy algorithm, is

finite.

Recall that the expansion

r ¼
P1
i¼1

"i�
i; "i � 0 ð4Þ

is greedy if, and only if, the inequality jr�
Pm

i¼1 "i�
ij < �m

holds for all m. It is known that the sequence f"ig from

expansion (4) is not arbitrary. It must satisfy some conditions

determined by equation (1).

Now we describe these conditions. For this, we split the set

Q of cubic equations with the conditions (2) and (3) on three

sets Q3, Q4 and Q5. Let Q4 be a subset of Q consisting of

equations with p =�1. If we use notation a instead of q, we can

rewrite the equations from Q4 as

x3 � x2 þ ax ¼ 1; a 2 Z; a � 2:

Now let Q5 be a subset of Q consisting of equations with p =

q + 1. If we again use a instead of q, we can rewrite the

equations from Q5 as

x3 þ ðaþ 1Þx2 þ ax ¼ 1; a 2 Z; a � 0:

All remaining cubic equations, satisfying conditions (2) and

(3), are equations from the set Q3. So we can say that the set

Q3 consists of admissible cubic equations of general position.

The sets Q4 and Q5 consist of codimension one ‘degenera-

tions’. Reasons for this subdivision of set Q will be explained

below.

For any equation from Q3 and any i > 1 coefficients f"ig

satisfy the inequality "i"i�1"i�2 <lex qp1. Here <lex means that

the sequence of numbers on the left of this sign is less

that the sequence on the right in lexicographic order. Simi-

larly, for two other sets of equations we can write the

corresponding conditions on f"ig as follows: "i"i�1"i�2"i�3 <lex

ða� 1Þða� 1Þ01 for Q4 and any i > 2, "i"i�1"i�2"i�3"i�4 <lex

ðaþ 1Þ00a1 for Q5 and any i > 3. In all cases it is necessary to

put "0 = 0. These inequalities are well known [see, for example,

Parry (1960)].

In Fig. 1 we denote by triangles the

points ( p; q) corresponding to the

equations from Q3. Similarly, squares

correspond to the equations from Q4

and pentagons to those from Q5.

Now we consider all admissible

greedy expansions (4) (not only for

points from [0; 1]). To each expansion

we put in correspondence a complex

number
P1

i¼1 "i�
�i. Denote by A the set

of the sequences f"ig forming admissible

expansions. Then we can define the

plane point set

T ¼ Tð p; qÞ ¼
nP1

i¼1

"i�
�i : f"ig

1
i¼1 2 A

o
: ð5Þ

The set (5) was defined by Akiyama (1999, 2000). It is known

that Tð p; qÞ is a compact arcwise set with a fractal boundary.

The point of origin is an inner point of this set. This set

produces a self-similar plane tiling Tilð p; qÞ. Examples of

these tilings are represented in Fig. 2. We will consider the

algorithm for the construction of these tilings in detail.

To obtain a self-similar plane tiling, we must specify a

partition of the figure Tð p; qÞ into the figures pairwise similar

among themselves. We will say that these figures are tiles.

Using described sets Qk we can obtain these partitions as

follows. Consider a cubic equation from the set Qk. The figure

Tð p; qÞ can be represented as a union of k pairwise similar

tiles among themselves. The membership of the concrete point

z =
P1

i¼1 "i�
�i 2 Tð p; qÞ to one of k tiles is unambiguously
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Figure 1
Parameters p and q of cubic equations from the sets Q3, Q4 and Q4.

Figure 2
Fragments of self-similar plane tilings.



determined by the first k� 1 digits (coefficients

"1; "2; . . . ; "k�1) of the expansion of z to the powers of �.

More precisely, let Ak be a set of tuples ð"1; . . . ; "k�1Þ which

can be continued to admissible expansions from A. Then Ak

can be represented as a union of k non-intersecting sets

A
ð1Þ
k ;A

ð2Þ
k ; . . . ;A

ðkÞ
k . Corresponding tiles

TðmÞð p; qÞ ¼
nP1

i¼1

"i�
�i : f"ig

1
i¼1 2 A; ð"iÞ

k�1
i¼1 2 A

ðmÞ
k

o

are pairwise similar. These tiles form the required partition of

the Tð p; qÞ. Tuples A
ðmÞ
k for sets Qk are represented in Table 1.

In this table a dash (–) means that these coefficients are not

used in the definition of the set Ak. Similarly, an asterisk (*)

means that we can use any coefficients which are possible in

the greedy expansions for this tiling.

The described partition of Tð p; qÞ produces a self-similar

quasiperiodic plane tiling on k tile types.

We will say that partition

�kTð p; qÞ ¼
Sk

m¼1

�kTðmÞð p; qÞ

is a tiling Til0ð p; qÞ of level zero. Now, the set of the type m

tiles from the tiling Tilnð p; qÞ of level n is

TilðmÞn ð p; qÞ ¼ �nþk
nP1

i¼1

"i�
�i : f"ig

1
i¼1 2 A; ð"iÞ

nþk�1
i¼nþ1 2 A

ðmÞ
k

o
:

Note that the tiling Til0ð p; qÞ contains the point of origin.

Moreover, the tiling Tilnð p; qÞ is a patch in the tiling

Tilnþ1ð p; qÞ. So, in the limit n!1 we have a planar quasi-

periodic tiling Tilð p; qÞ. This tiling consists of tiles of k types.

Any two tiles of different types are similar to each other.

This way of constructing tiles TðmÞð p; qÞ and the corre-

sponding tiling is not suitable for computer realization. It is

connected to the infinity of the sequences from A and to the

difficulty of processing their enumeration. Therefore, we offer

a modified algorithm for this problem.

For every cubic equation with the conditions (2) and (3) we

construct a sequence ftng defined by a following recurrent

relation and initial conditions,

tiþ1 ¼ qti þ pti�1 þ ti�2; t0 ¼ 1; t1 ¼ 1; t2 ¼ qþ 1 for Q3;

tiþ1 ¼ ati � ti�1 þ ti�2; t0 ¼ 1; t1 ¼ 1; t2 ¼ a for Q4; and

tiþ1 ¼ ðaþ 1Þti þ ati�3 þ ti�4; t0 ¼ 1; t1 ¼ 1; t2 ¼ aþ 1;

t3 ¼ a2
þ 3aþ 3; t4 ¼ a3

þ 4a2
þ 6aþ 4 for Q5:

Note that tn is the total number of admissible greedy expan-

sions of finite length n � 1.

For any non-negative integer number l we can obtain the

greedy expansion on this sequence: l ¼
Ph¼hðlÞ

i¼1 "iðlÞti, with

0 � l ��g
i¼1"iðlÞti < tg for any g � h.

Accordingly, every such expansion determines a complex

number (plane point) zðlÞ =
PhðlÞ

i¼1 "iðlÞ�
�i.

Proposition 1. The figure Tð p; qÞ is a closure of the set of all

such points zðlÞ:

Tð p; qÞ ¼ fzðlÞ : l 2 Ng: ð6Þ

Formula (6) actually gives a new algorithm of construction of

the figure Tð p; qÞ. This algorithm is much more convenient for

computer realization. In Figs. 3, 4 and 5 we represent some

examples of the figures Tð p; qÞ consisting of the tiles

TðmÞð p; qÞ for the sets Q3, Q4 and Q5.

Similarly, the formula for TilðmÞn ð p; qÞ can be written as

TilðmÞn ð p; qÞ ¼ �nþkfzðlÞ : l 2 N; ð"nþ1ðlÞ; . . . ; "nþk�1ðlÞÞ 2 A
ðmÞ
k g:

Thus we have a new computer algorithm for the construction

of the tiling.

3. Weak parameterization

The approach to construction of the tilings Tilð p; qÞ described

above can be used for computer plotting of tilings, but it has

two limitations: (i) the high computational complexity of the

algorithm; and (ii) the inconvenience for further research of

the tiling.

The papers by Zhuravlev & Maleev (2007a, 2008a) and

Shutov & Maleev (2008) for Rauzy and Ito–Ohtsuki tilings

offered an alternative approach to the construction and

studying of quasiperiodic tilings. This approach is based on

parameterizations.

Weak parameterization for a tiling gives one-to-one corre-

spondence between tiles and parameters from some one-

dimensional set. To obtain weak parameterization for the

tilings Tilð p; qÞ let us introduce the following definition.

Consider a similarity transformation which maps the tile

with the point of origin to some fixed tile T. The image of the

point of origin under this transformation is called a Rauzy

point of the tile T.

Note that the corresponding similarity maps have the form

z! �nzþ � with � 2 Z½��. Therefore any Rauzy point

belongs to the ring Z½��. Since � is a root of a cubic equation,

all Rauzy points can be represented in the form c0 + c1� + c2�
2.

Define the operator of conjugation (0):
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Table 1
Tuples A

ðmÞ
k determined by a partition of the figure Tð p; qÞ into the tiles

TðmÞð p; qÞ.

"1 "2 "3 "4

Q3 A
ð3Þ
3 p q – –

A
ð2Þ
3 q 0; 1; . . . ; q� 1 – –

A
ð1Þ
3 = A3=ðA

ð2Þ
3 [ A

ð3Þ
3 – –

Q4 A
ð4Þ
4 0 a� 1 a� 1 –

A
ð3Þ
4 a� 1 a� 1 * –

A
ð2Þ
4 a� 1 0; 1; . . . ; a� 2 * –

A
ð1Þ
4 = A4=ðA

ð2Þ
4 [ A

ð3Þ
4 [ A

ð4Þ
4 Þ –

Q5 A
ð5Þ
5 a 0 0 aþ 1

A
ð4Þ
5 0 0 aþ 1 *

A
ð3Þ
5 0 aþ 1 * *

A
ð2Þ
5 aþ 1 * * *

A
ð1Þ
5 = A5=ðA

ð2Þ
5 [ A

ð3Þ
5 [ A

ð4Þ
5 [ A

ð5Þ
5 Þ



c0 þ c1�þ c2�
2ð Þ
0
¼ c0 þ c1� þ c2�

2;

c0 þ c1� þ c2�
2ð Þ
0
¼ c0 þ c1�þ c2�

2:

This operator is the algebraic conjugation in the ring gener-

ated by three roots of a cubic equation. Also this operator is a

bijection between rings Z½�� and Z½��.
Denote by Rð p; qÞ the set of all Rauzy points of the tiling.

Let RðmÞð p; qÞ be a set of Rauzy points of type m tiles. Then

Ið p; qÞ = Rð p; qÞ 0 and IðmÞð p; qÞ = RðmÞð p; qÞ 0 are corre-

sponding parameter sets.

Proposition 2. The set IðmÞð p; qÞ is an intersection of

the ring Z½�� with some right-open interval. Moreover,

IðmÞð p; qÞ � ½0; 1Þ.

Corollary. The closure IðmÞð p; qÞ is the same segment. The

closure Ið p; qÞ is a union of a finite number of segments. It is a

compact set.

For mathematical construction of a weak parameterization

it is possible to use the following method. Let A
ðmÞ
k be the set of

k-tuples which determines the tile type. Let "1; "2; . . . ; "k�1 be

the least (in the lexicographic order) tuple from A
ðmÞ
k . Then

�ðmÞ1 ¼ lim
n!1

ð"1tnþ1 þ "2tnþ2 þ . . .þ "k�1tnþk�1Þ

tnþk

is the left end of the segment IðmÞð p; qÞ. Considering the

asymptotic

tn ’ cð p; qÞ��n; ð7Þ

we find

�ðmÞ1 ¼ "1�
k�1
þ "2�

k�2
þ . . .þ "k�1�: ð8Þ

Using Table 1 and formula (8) we can obtain all left ends �ðmÞ1

of the segments IðmÞð p; qÞ.

The length of the segment I ðmÞð p; qÞ is calculated using the

formula

lðmÞ ¼ lim
n!1

#TilðmÞn

tnþk

;

where #TilðmÞn is the number of type m tiles in the patch

Tilnð p; qÞ. For practical calculation of lðmÞ we can express

#Til ðmÞn through tn and use asymptotic (7).

So, for example, for the set Q3 and any n � 1 we have

#Tilð1Þn = tnþ1, #Tilð2Þn = tn�1 þ ptn; #Tilð3Þn = tn. Therefore

l ð1Þ ¼ lim
n!1

tnþ1

tnþ3

¼ �2;

l ð2Þ ¼ lim
n!1

tn�1 þ ptn

tnþ3

¼ �4
þ p�3;

l ð3Þ ¼ lim
n!1

tn

tnþ3

¼ �3:

The lengths of the intervals l ðmÞ for the sets Q4 and Q5 are

calculated similarly. Expressions of #TilðmÞn through tn, left ends

�ðmÞ1 , lengths lðmÞ and right ends �ðmÞ2 of the intervals for all sets

are represented in Table 2.

The existence of weak parameterization implies that the set

of Rauzy points Rð p; qÞ is a model set.

Model sets are a well known mathematical model of

quasicrystals [see, for example, Meyer (1972); Moody (2000)].

There is a mathematical theory of model sets which can be

applied to the sets Rð p; qÞ. From this theory in particular it

follows that the set of Rauzy points Rð p; qÞ has a pure point

diffraction (Schlottmann, 1998, 2000; Zhuravlev & Maleev,

2008b). A similar property holds for the sets RðmÞð p; qÞ too.
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Table 2
Weak parameterization for the tilings.

Set m #TilðmÞn Left end �ðmÞ1 Length l ðmÞ Right end �ðmÞ2

Q3 1 tnþ1 0 �2 �2

2 tnþ1 þ ptn q�2 �4 þ p�3 �
3 tn p�2 þ q� �3 1

Q4 1 tnþ1 0 �3 �3

2 tnþ1 � tn þ tnþ1 ða� 1Þ�3 �5 � �4 þ �3 �2

3 tn�1 ða� 1Þð�3 þ �2Þ �5 �
4 tn ða� 1Þð�2 þ �Þ �4 1

Q5 1 tnþ1 0 �4 �4

2 tn�3 þ atn�2 ðaþ 1Þ�4 �8 þ a�7 �3

3 tn�2 þ atn�1 ðaþ 1Þ�3 �7 þ a�6 �2

4 tn�1 þ atn ðaþ 1Þ�2 �6 þ a�5 �
5 tn ða�4 þ ðaþ 1Þ� �5 1

Figure 3
Examples of Tð p; qÞ consisting of tiles TðmÞð p; qÞ for the set Q3.

Figure 4
Examples of Tð p; qÞ consisting of tiles TðmÞð p; qÞ for the set Q4.

Figure 5
All possibilities for the set of Q5 figures Tð p; qÞ consisting of tiles
TðmÞð p; qÞ.



Now we introduce an important definition. The nuclear

Nuclð p; qÞ of the tiling Tilð p; qÞ is a union of tiles whose

Rauzy points have parameters �ðmÞ1 , that is the left ends of

intervals of weak parameterization.

The nuclear has the following elementary properties:

(i) The nuclear Nuclð p; qÞ contains exactly one tile for each

tile type.

(ii) The tile containing the point of origin belongs to the

nuclear.

(iii) The nuclear Nuclð p; qÞ coincides with tiling Til0ð p; qÞ

of level zero.

The fundamental role of the nuclear Nuclð p; qÞ in the study

of the tilings Tilð p; qÞ will be shown below.

4. Strong parameterization for the tiling

Weak parameterization for tilings described above does not

consider the neighborhood of the tiles. So we need another

type of parameterization. Let us call it strong parameteriza-

tion.

Two tiles from Tilð p; qÞ are called neighboring if they have

a common part of boundary. Let x 2 Rð p; qÞ be a Rauzy point

of some tile T. The local star SðxÞ is a set of vectors traced from

this Rauzy point x to Rauzy points of tiles neighboring T.

Obviously the vectors from SðxÞ belong to the ring Z½�� (as all

Rauzy points have coordinates from Z½��). Therefore, the

conjugation operator maps the set SðxÞ to the set of local

numbers S 0ðx 0Þ. The local numbers are defined by the

following property. If x 0 is a parameter of some tile, then

fx 0 þ y 0 : y 0 2 S 0ðx 0Þg is the set of parameters of the tiles

neighboring this tile. Strong parameterization is a description

of sets of local numbers S 0ðx 0Þ for parameters x 0. It is more

convenient to consider local color stars CSðxÞ in which each

local vector has weight, the number equal to the type of the

neighboring tile. Denote by CS 0ðx 0Þ corresponding to CSðxÞ

the set of local color numbers of the parameter x 0.

Proposition 3. The tiling Tilð p; qÞ has only finite types of

local color stars CSðxÞ.

Assume that the tiling Tilð p; qÞ has only r types of local

color stars. Denote by R̂RðiÞð p; qÞ the set of Rauzy points with

local color star of type i (i = 1; 2; . . . ; r). Let ÎIðiÞð p; qÞ =

R̂RðiÞð p; qÞ
0 be the corresponding parameter sets.

Proposition 4. ÎIðiÞð p; qÞ � Ið p; qÞ is an intersection of the

ring Z½�� with some right-open interval.

So, construction of strong parameterization for the tiling

Tilð p; qÞ demands determination of the intervals ÎIðiÞð p; qÞ, i =

1; 2; . . . ; r and calculation of corresponding sets of local

numbers. In Fig. 6 we represent 11 types of local color stars

CSðxÞ of the tiling Tilð1; 2Þ and corresponding intervals of

parameters ÎIðiÞð1; 2Þ. In Table 3 and 4 values of local numbers

and strong parameterization for the tiling Tilð1; 2Þ are repre-

sented.

The constructed strong parameterization can be used, in

particular, for the modeling of layerwise growth for the tilings

Tilð p; qÞ. The geometrical model of layerwise growth was

firstly introduced by Rau et al. (2002) and Zhuravlev (2002). In

the sequel, the layerwise growth for various types of tilings

was studied by Zhuravlev et al. (2002), Zhuravlev (2003),

Shutov (2003) and Zhuravlev & Maleev (2007a, 2008a).

The layerwise growth can be defined as follows. Consider as

a seed an arbitrary finite set P of tiles from Tilð p; qÞ. Tiles

neighboring the tiles from P, with the exception of tiles from

P, form the first coordination encirclement eq1ðPÞ. Tiles

neighboring the tiles from eq1ðPÞ, with the exception of tiles

from P and eq1ðPÞ, form the second coordination encirclement

eq2ðPÞ. Repeating this process, we can receive nth coordina-

tion encirclement eqnðPÞ etc.

Computer modeling of layerwise growth with use of the

strong parameterization gives the following result.

Conjecture 1. Tilings Tilð p; qÞ have polygonal growth. More

precisely, for every tiling there exists a convex centrally

symmetric polygon polð p; qÞ such that limn!1 eqnðPÞ=n =

polð p; qÞ.
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Figure 6
Eleven types of color local stars of the tiling Tilð1; 2Þ.

Table 3
Local numbers for the tiling Tilð1; 2Þ.

Local number Value

s1 �4

s2 �3

s3 �3 þ �4

s4 �2 � �3

s5 �2 þ �4

s6 �2 þ �3

s7 � � �2

s8 2�2

s9 2�2 þ �4

s10 2�2 þ �3

s11 1� �
s12 1� �2

s13 2� þ �2



In Fig. 7 we represent the layerwise growth process and the

growth polygon for the tiling Tilð1; 2Þ.

5. Complexity function

By definition, the n-crown of the tile X from the tiling

Tilð p; qÞ is a union of its first n coordination encirclements:

CnðXÞ ¼ X [
Sn
i¼1

eqiðXÞ:

The crown CnðXÞ can also be defined as a set of all tiles of the

tiling with distance from the tile X not greater than n [in

natural metric of the tiling, defined by Zhuravlev (2002)]. Two

crowns CnðXÞ and CnðYÞ are called equivalent if there exists a

vector z such that CnðXÞ = CnðYÞ + z. Let NTilð p;qÞðnÞ be a

number of equivalence classes of n-crowns. The function

NTilð p;qÞðnÞ is called the complexity function of the tiling

Tilð p; qÞ.

It is obvious that for periodic tilings Til,

NTilðnÞ = constant for n � n0ðTilÞ. On the other

hand, for a completely random tiling Til, the

function NTilðnÞ has at least exponential

growth, or is even equal to infinity for any n.

Study of the function NTilðnÞ motivated, in

particular, the well known conjecture

connecting the order of growth of the function

NTilðnÞ with the structure of the translation

group of the tiling Til (Pleasants, 2000).

In the paper by Zhuravlev & Maleev

(2007b) the fundamental theorem about the

complexity function of the tilings with strong

parameterizations was proved. It is possible to

check that the tilings Tilð p; qÞ satisfy the

conditions of this theorem. Thus, we have the

following results connecting complexity func-

tion, layerwise growth and strong para-

meterization.

Proposition 5. In the tiling Tilð p; qÞ, the

value of the complexity function NTilð p;qÞðnÞ is

equal to the number of tiles in n-crown Cn½Nuclð p; qÞ�, where

Nuclð p; qÞ is the nuclear of tiling.

Proposition 6. Various tiles from Cn½Nuclð p; qÞ� have

various n-crowns.

Proposition 7. Let In;X be a set of parameters of tiles from

Tilð p; qÞ, with n-crown equivalent to CnðXÞ. Then In;X is an

intersection of the ring with some right-open interval. The left

end of this interval is a parameter of the tile from

Cn½Nuclð p; qÞ�, with n-crown equivalent to CnðXÞ.

Corollary. NTilð p;qÞðnÞ ’ c1ð p; qÞn2, where c1ð p; qÞ is a

constant depending only on p and q.

Proven results can be used to calculate strong para-

meterizations for the tilings. From proposition 7 it follows that

the ends of the intervals ÎIðiÞð p; qÞ, i = 1; 2; . . . ; r are parameters

of tiles from C1½Nuclð p; qÞ�, and r is the number of tiles in

C1½Nuclð p; qÞ�. Moreover, proposition 6 implies that for the

determination of local color numbers it is sufficient to calcu-

late corresponding local color vectors for all tiles from

C1½Nuclð p; qÞ�.

In Fig. 8 a patch of the tiling Tilð1; 2Þ is represented. The

bold line selects 1-crown C1½Nuclð1; 2Þ� of the nuclear

Nuclð1; 2Þ. Each of eleven tiles from C1½Nuclð1; 2Þ� determines

one of the possible local encirclements in the tiling Tilð1; 2Þ.

6. Vertices of the tiling and their parameters

If a point belongs at least to three tiles from Tilð p; qÞ it is

called a vertex of the tiling. Consider the problem of para-

meterization of vertices.

Proposition 8. Let v be a vertex of the tiling Tilð p; qÞ. Then

v 2 Q½��, i.e. v = a + b� + c�2 with rational a, b and c.

The conjugation map aþ b�þ c�2 $ a + b� + c�2 can be

continued from the ring Z½�� to the field Q½��. Thus we can

consider a set of parameters of vertices Wð p; qÞ = Vð p; qÞ
0,

where Vð p; qÞ is the set of vertices of the tiling Tilð p; qÞ.
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Figure 7
Layerwise growth for the tiling Tilð1; 2Þ.

Table 4
Strong parameterization for the tiling Tilð1; 2Þ.

Local numbers

Type of the neighboring tile

Local
color
star
type i

Tile
type
TðmÞn

Interval
ÎIðiÞð1; 2Þ

Number of
neighboring
tiles m ¼ 1 m ¼ 2 m ¼ 3

1 T
ð1Þ
1 ½0; �4Þ 8 s1, s2, s3, s4 s8, s9, s10 s13

2 T
ð1Þ
2 ½�4; �3Þ 8 s1, s2, s3, s4, �s1 s8, s9 s13

3 T
ð1Þ
3 ½�3; �3 þ �5Þ 6 s1, s2, s3, �s1, �s2 s8

4 T
ð1Þ
4 ½�3 þ �5; �3 þ �4Þ 6 s1, s2, �s1, �s2 s7, s8

5 T
ð1Þ
5 ½�3 þ �4; �2 � �3Þ 6 s1, s2, �s1, �s2, �s3 s7

6 T
ð1Þ
6 ½�2 � �3; �2 � �4Þ 8 s1, �s1, �s2, �s3, �s4 s6, s7

7 T
ð1Þ
7 ½�2 � �4; �2Þ 8 �s1, �s2, �s3, �s4 s5, s6, s7 s12

8 T
ð2Þ
1 ½2�2; 2�2 þ �4Þ 5 �s5, �s6, �s7, �s8 s2

9 T
ð2Þ
2 ½2�2 þ �4; 2�2 þ �3Þ 5 �s6, �s7, �s8, �s9 s11

10 T
ð2Þ
3 ½2�2 þ �3; �Þ 6 �s7, �s8, �s9, �s10 �s2 s11

11 T
ð3Þ
1 ½2� þ �2; 1Þ 3 �s12, �s13 �s11



Let V0ð p; qÞ be a set of vertices of the tiles from the 1-crown

of nuclear C1½Nuclð p; qÞ�. Then we can calculate a set of

parameters of vertices using the following algorithm.

Algorithm 1.

(i) Calculate parameters of all vertices from V0ð p; qÞ.

(ii) If the vertex v0 2 V0ð p; qÞ belongs to a tile with local

color star of type i, add to sets of parameters the set v00 +

ÎIðiÞð p; qÞ. [Recall that ÎIðiÞð p; qÞ is a set of parameters of Rauzy

points with local color star of type i.]

(iii) Repeat step (ii) for every tile with vertex v0.

(iv) Repeat steps (ii) and (iii) for every vertex v0 2 V0ð p; qÞ.

The method of calculation of parameters of vertices from

V0ð p; qÞ can be found in the papers of Akiyama & Sadahiro

(1998) and Zhuravlev & Maleev (2009b).

From the algorithm described above we have the following

result.

Proposition 9. The set of parameters of vertices Wð p; qÞ is a

finite union of non-intersecting sets

Wð p; qÞ ¼
Stv
i¼1

WðiÞð p; qÞ;

where WðiÞð p; qÞ is an intersection of some right-open interval

and the set �ðviÞ + Z½��, and �ðviÞ 2 Q½��.
It is obvious that we can take �ðviÞ 2 W0ð p; qÞ, and

tv � card V0ð p; qÞ.

Corollary. The set of vertices of the tiling Tilð p; qÞ is a

model set.

In Fig. 9 parameters of vertices of the tiling Tilð1; 2Þ are

represented. We can see two intervals with integer parameters

(i.e. with parameters from Z½��) W1ð1; 2Þ and interval

W1=3ð1; 2Þ with fractional parameters of the form

½ð1þ 2� þ �2Þ=3� + Z½��.
Now suppose that there are some different local types of

vertices in the tiling. In this case we can correspond to every

local type of vertices a finite number of intervals from the

parameter set Wð p; qÞ. In other words, different local types of

vertices can be parameterized. So, in the tiling Tilð1; 2Þ there

are two different local types of vertices. The first type corre-

sponds to parameters from the set W1ð1; 2Þ, the second to the

set W1=3ð1; 2Þ.

As another example, consider the parameterization of

vertices of the tiling Tilð1; 0Þ. In this case there are four

different local types of vertices. All vertices have integer

parameters. Each local type of vertices corresponds to one

interval from the parameter set Wð1; 0Þ (see Fig. 10).

7. Fractal boundaries

Now we consider boundaries of the tiling Tilð p; qÞ. Let

�ð p; qÞ be a boundary of the tile containing the point of

origin.

Conjecture 2. The boundary �ð p; qÞ can be represented as a

union of non-intersected connected sets

�ð p; qÞ ¼
St�
i¼0

�ið p; qÞ ð9Þ

with the following property: for i = 1; 2; . . . ; t� there exist

similarity transformations hi with factors �ki, such that
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Figure 9
Parameters of vertices of the tiling Tilð1; 2Þ.

Figure 10
Parameters of vertices of the tiling Tilð1; 0Þ.

Figure 8
1-Crown C1½Nuclð1; 2Þ� of tiling Tilð1; 2Þ determining all possible local
encirclements.



�ið p; qÞ ¼ hi½�0ð p; qÞ�: ð10Þ

The sets �ið p; qÞ are called elementary boundaries.

Fig. 11 shows the tile of the tiling Tilð1; 2Þ containing the

point of origin. The boundary is split into the elementary

boundaries similar to �0ð1; 2Þ.

Thus, the study of the boundary of the tile is reduced to the

study of the set �0ð p; qÞ. There exists an elementary recurrent

construction of the set �0ð p; qÞ. This construction is like the

construction of some classic fractals (such as the von Koch

curve).

A polyline with oriented segments is called an oriented

polyline. In other words, an oriented polyline is a union of

directed segments such that corresponding non-directed

segments form a polyline.

Let L be an oriented polyline. Define a map constrL of the

set of all oriented polylines to itself as follows. Let A;B be the

start and finish points of the polyline L. Let A1A2

���!
be an

arbitrary directed segment. Let h be a similarity transforma-

tion map A1A2

���!
to AB
�!

. Then

constrLðA1A2

���!
Þ ¼ h�1

� constrL � hðA1A2

���!
Þ ¼ h�1

ðLÞ:

For an arbitrary oriented polyline L1, we denote by

constrLðL1Þ the union of all images of its oriented segments

under the map constrL. Denote by constr
ðnÞ
L the nth iteration of

the map constrL.

Conjecture 3. Suppose that Z0 and Z1 are the start and finish

points of the curve �0ð p; qÞ. Then there exists an oriented

polyline L such that

�0ð p; qÞ ¼ lim
n!1

constr
ðnÞ
L ðZ0Z1

��!
Þ: ð11Þ

Moreover, all vertices of the polyline constr
ðnÞ
L ðZ0Z1

��!
Þ belong to

�0ð p; qÞ.

In Fig. 12, an oriented polyline L and its images under the

first four iterations of the map constrL are represented.

In spite of equation (11),

�0ð p; qÞ 6¼
S1
n¼1

constr
ðnÞ
L ðZ0Z1

��!
Þ;

i.e. not all points of boundary �0ð p; qÞ can be constructed

using the map constrL.

Corollary. The boundary �ð p; qÞ is a fractal set. Its Haus-

dorf dimension is greater than one.

For practical calculation of map constrL we can use the

following conjecture.

Conjecture 4. Suppose that the vertices of the polyline

constrLðZ0Z1

��!
Þ divide �0ð p; qÞ on j curves �ðiÞ0 ð p; qÞ. Then there

exist the similarity transformations h0;i with factors equal to

powers of � such that h0;i½�0ð p; qÞ� = �ðiÞ0 ð p; qÞ.

Corollary. �0ð p; qÞ has partition into the sets similar to

�0ð p; qÞ:

�0ð p; qÞ ¼
Sj

i¼1

h0;ið�
ðiÞ
0 ð p; qÞÞ: ð12Þ

So, in practice, we can find the decomposition (12). From this

decomposition we can obtain vertices of polyline L, and,

consequently, the map constrL.
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Figure 11
Boundary of the tile of the tiling Tilð1; 2Þ, split into elementary
boundaries.

Figure 12
Polyline L and its images under the first four iterations of the map
constrL.



There exists an alternative approach for constructing the

maps constrL corresponding to fractal elementary boundaries

�0ð p; qÞ. This approach is based on the following conjecture.

Conjecture 5. Let li be a vector of some segment of the

oriented polyline L corresponding to a map constrL for the

elementary boundary �0ð p; qÞ. Then li = �i�
�di z, where di is a

natural number and �i = 	1 and z is a complex number

corresponding to the vector Z0Z1

��!
. Moreover, we have the

equality

P
�i�
�di ¼ 1; ð13Þ

where the summation is taken over all segments of the

oriented polyline L.

Note that equation (13) assumes an ordered sum; then the

equation explicitly determines the polyline L. Moreover, the

oriented polyline L can be specified as a sequence of pairs

ð�i; diÞ in view of their order. For short we will write only

values di for �i = 1. We will also use the designation di in the

case of �i =�1. We will also use the designation d k if the value

d is repeated k times consecutively in the code of the polyline.

Note that the expansion (13) can be obtained from the search

of algebraic relations equivalent to an equation for ��1. In

Table 5 we represent codes of oriented polylines L for some

tilings from Q3. For p = 0, 1, 2, 3, we can write these codes for

general q. For the set Q4 and a = 2 the code of the oriented

polyline is 432. For the set Q5 in the cases a = 0 and a = 1 the

codes of oriented polylines are 54 and 5441, respectively. For

other values of a, codes of polylines for tilings from the sets Q4

and Q5 are not known. Note that by using Table 5 we can

prove conjectures 3–5 for p = 0, 1, 2, 3.

Now we can describe parameters of boundaries of the tiling

Tilð p; qÞ. Clearly, using an algorithm similar to algorithm 1, we

can reduce the calculation of parameters of all boundaries to

calculation of parameters of boundaries from the nuclear

Nuclð p; qÞ. Considering the similarity of all tiles it is sufficient

to calculate the parameters �ð p; qÞ
0 of the boundary of one

tile. In view of equations (9) and (10) it is sufficient to calculate

parameters �0ð p; qÞ
0. However, the construction of all para-

meters from �0ð p; qÞ
0 is an extremely difficult problem.

Nevertheless, it is possible to construct parameters of some

point set, everywhere dense in �0ð p; qÞ.

Let �ðappÞ
0;n be a set of vertices of oriented polyline

constr
ðnÞ
L ðZ0Z1

��!
Þ and

�ðappÞ
0 ¼

S1
i¼0

�ðappÞ
0;i

[the superscript ‘(app)’ stands for ‘approximating point set’]. It

is obvious that �ðappÞ
0 is everywhere dense in �0ð p; qÞ. From the

definition of the map constrL we can obtain recurrent

formulae expressing points from �ðappÞ
0;n through points from

�ðappÞ
0;i , i < n. So, all points from �ðappÞ

0;n rationally express

through vertices Z0 and Z1. Using the conjugation map, we can

transfer the recurrent formula to the set of parameters. So, we

can call parameters for all points from �ðappÞ
0 . After that, we can

describe parameters for all points from �ðappÞ
all . Here �ðappÞ

all is the

set of points corresponding to points from �ðappÞ
0 on all

boundaries of the tiles from Tilð p; qÞ.

Alternative parameterization of boundary �0ð p; qÞ is

obtained by Messaoudi (2005). This approach does not use the

conjugation map.

8. Similarity transformations of the tilings

Tilings Tilð p; qÞ are not periodic. Therefore they cannot have

translations in their symmetry groups. Instead of crystal-

lographic symmetry transformations we can consider the

similarity transformations of the tilings Tilð p; qÞ.

The transformation h : z! �zþ ð1� �Þc is called a simi-

larity transformation of the tiling Tilð p; qÞ if it maps the set of

boundaries of the tiling Tilð p; qÞ into itself. The complex

number � is a similarity factor, c is a similarity center.

From the definition we immediately have the following

properties of similarity transformations.

(i) Let h1 and h2 be two similarity transformations of the

tiling Tilð p; qÞ. Then the composition h1 � h2 is well defined

and this composition is a similarity transformation of the tiling

Tilð p; qÞ.

(ii) Let e : z! z be the identical transformation. Then e is

a similarity transformation of the tiling Tilð p; qÞ. For any

similarity transformation h we have h � e = e � h = h.

(iii) Let h 6¼ e be a similarity transformation of the tiling

Tilð p; qÞ. Then transformation h�1 cannot be a similarity

transformation of this tiling.

Let G be a set of all similarity transformations of the tiling

Tilð p; qÞ. From property (iii) it immediately follows that the

set G is not a group. Nevertheless, from properties (i) and (ii)

and from associativity of composition it follows that the set G

is semigroup with the composition operation.

Similarity of quasiperiodic tilings is a natural generalization

of the similarity of model sets. Evaluation of the similarities of

model sets can be found by Cotfas (1999).

Conjecture 6. Let h be a similarity transformation of tiling

Tilð p; qÞ. Then its similarity factor is equal to 	�s for some

s 2 N.

Further, for simplicity, we consider only similarity trans-

formations with the factor �s. Denote by Gþ the set of such

similarity transformations.

Similarity of the tilings Tilð p; qÞ is studied by Zhuravlev &

Maleev (2009a,b) in the special case of Rauzy tiling Tilð1; 1Þ.

Thus the following facts were discovered.
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Table 5
Codes of oriented polylines L determining elementary boundaries
�ð p; qÞ for tilings from Q3.

p

q 0 1 2 3

1 32 343 – –

2 322 32343 33341 –

3 3222 3232343 3233341 3333411

4 32222 323232343 322333341 233334311

5 322222 32323232343 32223333341 22333343311

32
q

3ð23Þq�143 32
q�2

3q41 2
q�3

3443q�31
2



Proposition 10. Let h be a similarity transformation with the

factor �s. Suppose that h maps the set of all vertices of the

tiling Tilð1; 1Þ to itself. Then h is a similarity transformation of

the tiling Tilð1; 1Þ. The converse is also true.

Unfortunately, for arbitrary tilings Tilð p; qÞ, a similar

proposition is incorrect. In the general case we have only the

following result.

Proposition 11. Let h be a similarity transformation which

maps the set �ðappÞ
all to itself. Then h is a similarity transfor-

mation of the tiling Tilð p; qÞ. The converse is also true.

Note that the conjugation map reduces the determination of

the similarity transformations of the tiling Tilð p; qÞ to deter-

mination of all transformations of the form x ! � 0x +

ð1� � 0Þc 0 which maps the set of parameters of boundaries to

itself. Proposition 11 implies that it is sufficient to find the

transformations which map the closure �ðappÞ
all ð p; qÞ

0 to itself.

Recall that �ðappÞ
all ð p; qÞ 0 is a union of countable sets of

segments. This approach can be used for a practical calculation

of the similarity of the tiling Tilð p; qÞ.

The conditions of proposition 11 can probably be weaker.

Let � ðappÞ
all;n be a set of points from the boundaries of the tiling

Tilð p; qÞ corresponding to the points from �ðappÞ
0;n .

Conjecture 7. For any tiling Tilð p; qÞ there exists a number n

(depending on p; q) such that h is a similarity transformation

of the tiling Tilð p; qÞ if and only if h maps the set �ðappÞ
all;n to itself.

Note that the map z! �sz is a similarity transformation of

the tiling Tilð p; qÞ.

Let G0 be a set of generators of the semigroup Gþ, i.e.

(i) Any similarity transformation from Gþ is a composition

of the similarity transformations from G0.

(ii) Any similarity transformation from G0 cannot be

represented as a composition of another similarity transfor-

mation from G0.

Note that the similarity transformations with the factor �
belong to G0.

For the tiling Tilð1; 1Þ in the paper by Zhuravlev & Maleev

(2009b) it is shown that for every generator from G0 the

corresponding similarity center is a vertex of the tiling Tilð1; 1Þ

and its similarity factor is �. For arbitrary tilings Tilð p; qÞ these

results are false. Nevertheless we have the following conjec-

ture.

Conjecture 8. Let G0
s ð p; qÞ be a set of generators from G0

with the factor �s. Let CðG0Þ be a set of their similarity centers.

Then the set G0
s ð p; qÞ is empty for any s � s1ð p; qÞ. Here

s1ð p; qÞ is a constant which depends only on p and q.

9. Conclusions

We have considered a method of construction of quasiperiodic

tilings Tilð p; qÞ based on �-expansions corresponding to cubic

irrationalities. We obtained three classes of tilings, Q3, Q4 and

Q5, which consisted of three, four and five pairwise similar

prototiles, respectively. For all classes we obtained weak

parameterization for the tilings. Thus we have a new conve-

nient algorithm for construction of the tilings.

We also considered strong parameterization. This para-

meterization determines local tiles encirclements. Using

strong parameterization we obtained polygonal layerwise

growth of the tilings Tilð p; qÞ. In other words, there exists the

polygon polð p; qÞ such that

lim
n!1

eqnðPÞ

n
¼ polð p; qÞ;

where eqnðPÞ is the nth coordination encirclement defined

above.

From the theorem of the complexity function we found that

the n-crown of the nuclear Nuclð p; qÞ of the tiling determines

the value of the complexity function NTilð p;qÞðnÞ =

#Cn½Nuclð p; qÞ� and all possible variants of n-crown of tiles

from Tilð p; qÞ.

It is established that the boundary of the tile �ð p; qÞ can be

represented as a union of elementary fractal boundaries

�ið p; qÞ. These elementary boundaries are pairwise similar.

We also consider algorithms for calculating elementary fractal

boundaries.

There are many similarity transformations that map

boundaries of the tilings Tilð p; qÞ to themselves. It is shown

that the set of such transformations is a semigroup. It is

possible to use parameters of vertices and boundaries of the

tilings Tilð p; qÞ to study this semigroup.

This work was partially supported by RFBR (grants Nos.

08-02-00576 and 08-01-00326).
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